Motivation and Idea:

Goal: Improve object localization capability of image classification networks.

- Training image “dog”
 - Network focuses only on the most discriminative part (dog’s face) for classification

- Training image “dog”
 - Hide patches to force the network to seek other relevant parts
 - Existing object localization methods (e.g., Oquab 2015, Zhou 2016) tend to localize only the most discriminative part.
 - Masking image pixels has been used for visualizing CNNs (Zeiler 2014), semantic segmentation (Wei 2017), and generating occlusion training examples (Wang 2017).

Approach:

Training

- For the same image, we randomly hide a different set of patches in each training epoch.
 - This allows the network to learn multiple relevant object parts for each image.

Testing

- During testing, the full image without any hidden patches is given as input.

Assigning value to hidden pixels:

- Patches are hidden only during training; during testing full image is given as input.
 - Activations of 1st conv layer will have different distribution during training and testing.
 - Assigning \(\mu \) (mean RGB value of all pixels in dataset) to each hidden pixel ensures same activation (in expectation) during training and testing:
 \[
 E[\sum_{i=1}^{k \times k} w_i x_i] = \sum_{i=1}^{k \times k} w_i \mu
 \]

Qualitative Results:

- AlexNet-GAP
 - [Zhou et al. CVPR 2016]

- Ours

Failure Cases:

- AlexNet-GAP
- Ours

- Merges spatially close instances together (first row).
- Localizes co-occurring context of a class (second row).

Quantitative Results:

- **Object localization results on ImageNet validation data:**
 - Methods | GT-known Loc (AlexNet) | Top-1 Loc (AlexNet) | GT-known Loc (GAP) | Top-1 Loc (GAP)
 - Backprop [Simonyan 2014] | - | 34.83 | - | 38.69
 - GAP [Zhou 2016] | 54.90 | 36.25 | 58.41 | 43.60
 - Ours | 58.68 | 37.65 | 60.29 | 45.21

- **Comparison with dropout:**
 - Methods | GT-known Loc (AlexNet) | Top-1 Loc (AlexNet) | GT-known Loc (GAP) | Top-1 Loc (GAP)
 - AlexNet | 54.90 | 36.25 | 58.41 | 43.60
 - AlexNet-Hs16 | 57.86 | 36.77 | 60.29 | 45.21
 - AlexNet-Hs32 | 58.75 | 37.33 | 61.38 | 46.31
 - AlexNet-Hs44 | 58.55 | 37.54 | 62.14 | 47.45
 - AlexNet-Hs56 | 58.43 | 37.34 | 62.93 | 48.55
 - AlexNet-Hs-mix | 58.68 | 37.65 | 63.11 | 48.76

- **Results with different patch sizes:**
 - Methods | GT-known Loc (AlexNet) | Top-1 Loc (AlexNet) | GT-known Loc (GAP) | Top-1 Loc (GAP)
 - AlexNet | 54.90 | 36.25 | 58.41 | 43.60
 - AlexNet-dropout-trainonly | 42.17 | 7.65 | 55.84 | 37.54
 - AlexNet-dropout-train + test | 53.48 | 31.68 | 67.25 | 49.31

- **Action localization results on THUMOS 2014:**
 - Pre-trained AlexNet
 - Pre-trained AlexNet with Hide-and-Seek

- **Conclusions:**
 - Simple idea of Hide-and-Seek to improve weakly-supervised object and action localization.
 - Only need to change the input without modifying the network.
 - Generalizes to multiple network architectures, input data, and tasks.

Acknowledgement: This work was supported in part by Intel Corp, Amazon Web Services Cloud Credits for Research, and GPUs donated by NVIDIA.