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Motivation and Idea: Assigning value to hidden pixels:

Qualitative Results:
Quantitative Results:

Conclusions:
• Simple idea of Hide-and-Seek to improve weakly-supervised object and action 

localization.
• Only need to change the input without modifying the network.
• Generalizes to multiple network architectures, input data, and tasks.
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• For each image, we show the bounding box and CAM (Class Activation Map) obtained by 
AlexNet-GAP (left) and our method (right).

• Ground-truth and predicted boxes are in red and green, respectively.
• Our approach localizes more relevant parts.

Failure Cases:

Methods GT-known Loc
(AlexNet)

Top-1 Loc
(AlexNet)

GT-known Loc
(GoogLeNet)

Top-1 Loc
(GoogLeNet)

Backprop [Simonyan 2014] - 34.83 - 38.69

GAP [Zhou 2016] 54.90 36.25 58.41 43.60

Ours 58.68 37.65 60.29 45.21

Methods GT-known Loc Top-1 Loc

Ours 58.68 37.65

AlexNet-dropout-
trainonly

42.17 7.65

AlexNet-dropout-
traintest

53.48 31.68

Methods GT-known Loc Top-1 Loc

AlexNet-GAP 54.90 36.25

AlexNet-HaS-16 57.86 36.77

AlexNet-HaS-32 58.75 37.33

AlexNet-HaS-44 58.55 37.54

AlexNet-HaS-56 58.43 37.34

AlexNet-HaS-mix 58.68 37.65

Methods IOU thresh 
= 0.1

0.2 0.3 0.4 0.5

Video-GAP 34.23 25.68 17.72 11.00 6.11

Ours 36.44 27.84 19.49 12.66 6.84

• Hiding patches during training leads to better object localization results.
• Our approach generalizes across different networks.

Comparison with dropout:
Results with different patch sizes:

• In Dropout, units in a layer are dropped randomly, while in our work, contiguous 
image regions are dropped.

• Our method of hiding patches performs better than dropout on input image.
• Hiding patches of mixed sizes gives best Top-1 Loc accuracy.

Object localization results on ImageNet validation data:

Action localization results on THUMOS 2014: 

• Hiding the frames during training leads to better action localization results.

Pre-training with Hide-and-Seek for image segmentation : 

AlexNet-GAP
[Zhou et al. CVPR 2016]

Ours

• For the same image, we randomly hide a different set of patches in each training epoch.
• This allows the network to learn multiple relevant object parts for each image.

• During testing, the full image without any hidden patches is given as input.

• Patches are hidden only during training; during testing 
full image is given as input.

• Activations of 1st conv layer will have different 
distribution during training and testing.

• Assigning µ (mean RGB value of all pixels in dataset) to 
each hidden pixel ensures same activation (in 
expectation) during training and testing:

AlexNet-GAP Ours

• Merges spatially close instances together (first row).
• Localizes co-occurring context of a class (second row).

Methods Pixel acc. Mean acc. Mean IU f.w. IU

AlexNet 85.58 63.01 48.00 76.26

AlexNet (with Hide and Seek) 86.24 63.58 49.31 77.11

• Pre-training the AlexNet with Hide-and-Seek gives better segmentation results.

Goal: Improve object localization capability of image classification networks.

• Existing object localization methods (e.g., Oquab 2015, Zhou 2016) tend to localize only 
the most discriminative part.

• Masking image pixels has been used for visualizing CNNs (Zeiler 2014), semantic 
segmentation (Wei 2017), and generating occlusion training examples (Wang 2017).


