Hybrid Multi-Core Algorithms for Regular Image
Filtering Applications

Shrenik Lad*, Krishna Kumar Singh*, Kishore Kothapalli and P.J. Narayanan
Email: {shrenik.lad@students. krishnakumar.singh@students., kkishore@,pjn@ }iiit.ac.in
International Institute of Information Technology, Hyderabad, India
Gachibowli, Hyderabad 500 032, India.

Abstract—GPGPU has received lot of attention in the
past few years mainly because of the performance gain
GPUs offer at a low price. Recently, researchers have
identified hybrid multi-core computing as a better solution
compared to accelerator based computing for several
problems. In this paper, we evaluate two regular problems
in image processing, bilateral filtering and convolution,
on a hybrid multi-core platform. We provide a detailed
analysis of these algorithms by comparing their perfor-
mance on three platforms 1)CPU+GPU hybrid, 2) pure
GPU and 3)pure CPU. We show that clear performance
gains can be obtained simply by using basic techniques
like data decomposition and overlapped execution, when
a hybrid computing model is used. Finally, we conclude
by discussing some future prospects in the area of hybrid
computing.

I. INTRODUCTION

Accelerator based computing has been widely adopted
with GPUs and other similar accelerators becoming
more and more popular. GPUs are well known for the
performance gains they offer at fairly low prices. Other
available accelerators are IBM Cell, FPGAs, and ASICs.
GPUs are good for data-parallel problems showing reg-
ular memory access patterns and high arithmetic intensi-
ties. GPU computing in image processing and graphics
applications is very common mainly due to the inherent
data parallelism present in them. Performance gains as
high as 100x-1000x are obtained in such problems.
GPUs, however do not perform well in case of irregular
computations. In this case, speedup obtained compared
to a CPU is much less (around 10x).

It is argued that after applying optimizations appro-
priate for both GPU and CPU, the performance gap
between the two narrows down to 2.5x on average
[1]. This implies that good performance gains can be
achieved while using GPU and the CPU together for the

* Student Authors

computation. This leads us to the idea of hybrid multi-
core computing, where we distribute our computation
among the CPU and the accelerator (GPU in our case),
so as to maximise the throughput while utilising all the
available resources. However, it is challenging to decide
the right workload for the right device.

Bilateral filtering and convolution are common filter-
ing operations in image processing. A bilateral filter
is an edge-preserving and noise removing filter, firstly
presented by Tomasi and Manduchi in 1998 [2]. In
this paper, we present hybrid multi-core algorithms for
bilateral filter and convolution and compare the perfor-
mance with pure-GPU and pure-CPU implementations
of the same. To our knowledge, this is the first work on
designing hybrid algorithms for these problems.

A. Related Work

A vast amount of literature can be found in the domain
of GPGPU, ranging from accelerating scientific applica-
tions [4], [5] to essential primitives like Scan, Reduce,
and Sort [3]. These works typically have the following
structure: The host (CPU) transfers the required data
to device (GPU). The kernel execution on the GPU
takes place and the output is transferred back to the
host. During the entire period, the CPU remains idle
and does not contribute to the kernel computation. CPUs
are evolving and matching the computational capabilities
of GPUs. A hybrid computing model that uses both
the CPU and GPU together for computing is a viable
alternative.

Some of the earlier works in hybrid multi-core com-
puting include hybrid solutions to solve dense linear
algebra problems by Tomov, Dongarra, and Baboulin [6],
hybrid approaches for QR factorization [7], Cholesky
factorization [8]. Hybrid Computing works show sev-
eral advantages while using CPU + GPU together, like
domain decomposition, pipelined parallelism and more
data parallelism. Recent work on hybrid list ranking

and connected components [9] achieved around 25%
speedups compared to their best known GPU implemen-
tations. These advantages have motivated us to think in
the direction of hybrid computing instead of optimising
the pure-GPU approaches.

There are few papers on image filtering using GPUs.
Yuko in his paper [10] presents a detailed implementa-
tion of the Canny edge-detection algorithm on the GPU.
Accelerating such operations makes real time video
applications possible. Fialka and Cadik, in their work
[11] evaluate two basic approaches (Fourier domain and
Spatial domain) for image filtering on the GPUs. They
conclude that spatial approach gives better performance
than the Fourier approach in many situations.

II. PRELIMINARIES
A. GPU Architecture

The GPU is a massively multi-threaded processor
containing hundreds of processing elements or cores,
called the Scalar Processors (SPs). The SPs are arranged
in groups of eight, called the Streaming Multiprocessors
(SMs). The Tesla C1060 has 30 such SMs, which makes
for a total of 240 processing cores. These eight SPs
execute in Single Instruction Multiple Thread (SIMT)
fashion. Hence, all the SPs in an SM execute the same
instruction at the same time.

The CUDA API allows a user to create a large number
of threads to execute code on the GPU. Threads are also
grouped into blocks and blocks make up a grid. Blocks
are serially assigned for execution on each SM. For more
details, we refer the interested reader to [12]

B. Multi-Core Architecture

We use the Intel i7 980 CPU in our experiments. Each
core runs at 3.4 GHz and with a thermal design power
of 130 W. The i7-980X has six cores and with active
SMT can handle twelve logical threads. The Intel i7 980
CPU has a peak double precision throughput of about
100 GFLOPS.

C. Hybrid Platform

Our hybrid (high-end) platform is a coupling of the
two devices, the Intel 17 980 and the Nvidia Tesla
C1060 GPU. The CPU and the GPU are connected via
a PCI Express version 2.0 link. This link supports a
data transfer bandwidth of 8 GB/s between the CPU and
the GPU. We also use another low-end hybrid platform
consisting of an Intel dual core and Nvidia GT520 GPU.
To program the GPU we use the CUDA API Version
3.2 [13]. For programming the CPU, we use OpenMP
specification 3.0 and ANSI C.

ITI. BILATERAL FILTER

A bilateral filter is an edge-preserving and noise
reducing filter used in image processing. It is a non-
linear filter in which the intensity value at any pixel is
equal to weighted sum of intensities in the neighbour-
hood. The weight of each neighbour is dependent on
its spatial distance as well as the intensity difference
with the central pixel. The filter involves transcendental
operations like computing exponentials, which can be
very computationally expensive. Hence, it is a compute
bound problem with regular memory access. Following
is the equation for 2D Bilateral Filter.

|=
N |

2 —243%) _(I(m!,n')—I(m,n))2

Onn= 303ttty o

Fig. 1. Result of running bilateral filter on image (Taken from [2])

According to [1], bilateral filter computation is able
to exploit all the available flops on both GPU and CPU
architectures. Existing solutions for bilateral filtering do
not exploit the computational power of CPUs and GPUs
at the same time. In such a scenario, it makes sense to
distribute the computations among the CPU and GPU,
proportional to their processing capacity. We would like
to do the load balancing in a way that minimises the
idle time of both devices and hence maximises the
throughput.

A. Proposed Solution

In this section, we describe our hybrid CPU+GPU al-
gorithm for the bilateral filtering problem. The pixels can
be divided among threads, where each thread computes
the weighted sum for that pixel. The spatial filter can
be computed once we know the filter size. For eg: for
a 15x15 filter, the spatial x and y distances can vary
only between 0 to 7 and hence the spatial filter can

be pre-computed. However, for the intensity (or range)
filter, the computations depend on the intensity values
of the neighbouring pixel and the central pixel. For a
typical Image, it is interesting to note that the intensity
difference between any two pixels ||I(i,j) - I(m,n)|| can
vary only between 0 and 2%, where k is the image color
depth or bit depth (generally 8 or 16). Hence in our
approach, we pre-compute all possible exponentials for
intensity differences in (0, 255) and store them in a look-
up table during the pre-processing stage. By doing this,
we save a lot of computations which are typically done
during kernel execution. Following are the equations for
computing the Spatial and Range lookup tables.

(2452
20

Range(i) = eﬁ; Spatial(i,j) =e *7a
1) Pre - Processing: Since the computation of expo-
nentials are more expensive on GPU, we create the look-
up tables on the CPU. After the pre-processing stage,
we divide the image into two parts, Igpy and Iopy
and transfer I py and the look-up tables to GPU device
memory.

Intensity Exponential
Diff Term

lo

Eoo Eoi Eo2 Eoia Eous
Eio Ein Eip [SEFE L)

Exo Bz Ezp Exia Epus

~

Eio Eu1 Eugp Eig14 Eig1s

254 l254

Eiso Eisi Eis2 Eis1a Eisis 255 o=

Fig. 2. Spatial And Intensity Lookup Table

2) CPU Computation: We use 12 OpenMP threads
on an Intel Core i7 for processing the computation on
Icpy part of the input image. Each thread takes a set
of pixels and computes filtered output for them by using
the pre-computed look up tables.

3) GPU Computation: On the GPU, we first load the
image from global memory into shared memory. This
is necessary because each image pixel will be accessed
by multiple threads in its neighbourhood. Around the
image block within a thread block, there is an apron of
pixels of the width of the kernel radius that is required in
order to filter the image block (Refer Fig.3.). Thus, each
thread block must load into shared memory the pixels
to be filtered and the pixels in the apron. If each thread
loads one pixel into shared memory, then the threads
which load the apron pixels remain idle during filtering.

The number of idle threads can be quite large in case of
large filter sizes. In our algorithm, we make each thread
in the block load multiple pixels sequentially into shared
memory. A linear mapping on thread (tx, ty) gives the
region of pixels to be loaded. On an average, each thread
loads 4-5 pixels for normal filter sizes. Our approach of
loading pixels does not create any idle threads. Once
the image is loaded into shared memory, filtering is
done using the look-up tables and the filtered image is
transferred back to the host.

Fig. 3. Linear Mapping for copying pixels from global memory
to shared memory. Left portion shows a thread block of 16 threads
marked in green color along with the apron in background. Yellow
colored thread (right image) in the block copies yellow colored pixels
from apron to shared memory. Similarly for others.

PRECOMPUTATION
e Compute Intensity and Spatial | D I_E
Lookup Tables.

e Divide Image Into lgpy and lgey

%

By
~_ o, o,
‘x_‘ooﬁ,ﬁ Q“’O/S

ey, M,

e Start 12 OpenMP threads s "fe,,I

%
® Give Icpy /12 pixels to each >
thread.

Kernel code for thread (tx, ty):

For each thread in parallel:
compute output for each pixel
with the help of Intensity and
Spatial lookup tables.

® Load Image pixels from Global
memory to shared memory
according to linear mapping.

e Syncthreads()

e Compute weighted sum for

\g&bq\! , pixel (tx,ty) using Intensity
0““'& yd and Spatial Lookup table.

Combine Outputcey and
Qutputgpy to get final result

Fig. 4. flow of the hybrid algorithm with time

B. Results

The fastest known implementation of bilateral filter
is reported in [1]. When we compare our algorithm’s
performance with it, we find that our approach is more
than two times faster than the best GPU implementation
available. This is mainly because of the improvements
we have made in the basic implementation. For each

filter size, we vary the Igpy to Iopy ratio (threshold)
and report the performance for best threshold. On an
average, the threshold for all filter sizes is around 9:1 on
the architectures described in Section 2C. This ensures
that the idle time for both devices is close to zero.

We move all the work to only GPU and only CPU
respectively and call it Pure-GPU and Pure-CPU perfor-
mance. The average speed-up achieved by our hybrid
algorithm over the Pure-GPU code is 10% for filter
sizes from 3x3 to 17x17. Figure 6 shows the absolute
speed of Hybrid, Pure-GPU, Pure-CPU approaches on
both architectures - Hybrid (high end) and Hybrid (low
end). Figures 5(left) plots the relative speeds of Pure-
GPU and Pure-CPU approaches with respect to the
hybrid algorithm’s speed on high end architecture. Figure
5(right) plots the same for low-end architecture.

Pure GPU speed
lati d(GPU) =
Relative Speed(GPU) Hybrid Algorithm speed

Pure CPU speed
lati d(CPU) =
Relative Speed(CPU) Hybrid Algorithm speed

Bilateral Filter - Hybrid (High End) Bilateral Filter - Hybrid (Low End)

1.2 1.2

1 —— 1

.——-—-__._..___a———I——l

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 0
3X3 5X5 9X9 15X 15 3X3 5X5 9X9
—#—Core|7 —=NvidiaTesla Hybrid ~—#—Dual Core =—m—GPU-GT520

15X 15
Hybrid

Fig. 5. GPU and CPU relative speed vs filter size on high-end(left)
and low-end(right) hybrid platforms

120 955 1050 27 143 161.7
52 619 670 12 100 108.5
18 159 178 41 43.9 46.5
6.6 62 70 15 18 19.3

Fig. 6. Table showing speed of filtering in Million pixels per second
(Mpix/sec) for various filter sizes on high-end and low-end Hybrid
platforms

IV. CONVOLUTION

Convolution is a common operation used in image
processing for effects such as blur, emboss and sharpen.
Given the image signal and the filter, the output at
each pixel is equal to the weighted sum of its neigh-
bours. Thus, the only arithmetic computations are simple

multiply-add operations and its memory accesses are
quite regular in a small neighbourhood. Since each pixel
can be computed independently by a thread, there is
ample parallelism available. The computations increase
with the size of filter and it exhibits high compute to
memory ratio.

The computation involved is able to exploit all the
available flops on both the GPU and the CPU archi-
tectures. Since the problem is compute bound and the
operations are highly data-parallel, we want the GPU and
CPU together to do the filtering on separate image parts.
Again, we would like to do the load balancing in a way
that maximises performance and minimises the idle time
of both devices. Our hybrid algorithm for convolution is
similar to bilateral filtering, except that no look-up tables
are required here. Only the filter and the image signal are
required to compute the filtering result. It must be noted
that our work includes only unseparable convolution, and
we analyse only small filter sizes - upto 17x17.

There are two approaches of doing convolution -
spatial and the Fourier approach, both the approaches
having their advantages and disadvantages. [11] does a
rigorous evaluation of the two approaches on GPU and
identifies that the spatial domain approach outperforms
the Fourier approach for simple and small filters. Hence,
we chose to use the normal convolution technique on
GPU. However on the CPU, we observe that the Fourier
approach always outperforms the spatial approach. While
using the Fourier approach, the filtering speed does not
vary with filter size because convolution translates to a
simple multiplication in the Fourier domain. The CPU
filtering speed therefore, remains constant across all filter
sizes whereas GPU speed decreases. Hence, contribution
of CPU to the overall computation increases.

A. Proposed Solution

1) Initialization: Divide the image into two parts
Igpyu and Iopy and transfer I prr to the global memory
of GPU.

2) GPU computation: Since each pixel is accessed by
multiple threads in the same block, we load the image
into shared memory by the method described in Section
III-A-3. The thread with global id (tx, ty) computes the
weighted sum for the pixel (tx, ty) by sequentially going
through the neighbours. The filtered image is transferred
to the CPU end after completion.

3) CPU computation: On the CPU, we use multiple
threads which perform the filtering on Iopy. For very
small filters (upto 5x5) we create OpenMP threads which
use the spatial approach for filtering, whereas for filters

greater than 5x5, we use MKLs implementation of
convolution (Fourier approach).

B. Results

We move all the work to only GPU and only CPU
respectively and call it Pure-GPU and Pure-CPU per-
formance. Performance gains upto 15-20% on high-
end platform and 30-40% on low-end platforms were
achieved. Average speedup considering all filter sizes and
both platforms is 18%. The idle time of both devices
is close to zero. Figure 7 shows the absolute speed
of Hybrid, Pure-GPU, Pure-CPU approaches on both
architectures. Figures 8(left) and 8(right) plot the relative
speeds of Pure-GPU and Pure-CPU approaches on high-
end and low-end platforms respectively.

Convolution - Hybrid (High End) Convolution - Hybrid (Low End)

06 06
04 04
02 M 0.2 ’_—‘—_//_’.o-/“
0 0
3X3 5X5 7X7 13X13 15X15 17X17 3X3 5X5 7X7 13X13 15X15 17X17
—+—Corel7 —@—Nvidia Tesla Hybrid —+—Dual Core ——Nvidia-GT520 Hybrid

Fig. 7. GPU and CPU relative speed vs filter size on high-end(left)
and low-end(right) hybrid platforms

137.8 1553 1728 17.5 216 235
73.13 1103 1234 17.5 177 195
57.6 870 974 17.5 140 153
57.6 441 492 17.5 53 68
57.6 360 405 17.5 46 62
57.6 255 316 17.5 39 55

Fig. 8. Table showing speed of convolution in million pixels per
second (Mpix/sec) for various filter sizes on high-end and low-end
hybrid platforms

V. CONCLUSIONS AND FUTURE WORK

We have presented hybrid algorithms for two filtering
applications used in Image Processing. Good speedups
were achieved as compared to the best GPU implementa-
tion and our Pure-GPU implementation. Our algorithms
are designed to scale as the underlying hybrid architec-
ture changes. They are well suited for current desktops
which come with dual-core or quad-core CPU along with
a low-end GPU.

Our current work analyses only small filters and does
not handle separable convolution. In the future, we plan
to do more rigorous study of convolution by designing

a hybrid algorithm for all possible scenarios. Presently,
GPU libraries are available which perform filtering using
only the GPU. A library for filtering algorithms on
hybrid architectures will save a programmer from the
efforts needed to write a hybrid code. It will also
promote hybrid computing since better performance will
be available at the same cost.

We also plan to work on other common primitives
used in image processing and computer vision. As more
hybrid algorithms are being designed and benefits are
realised, it becomes imperative for HPC researchers to
come up with programming mechanisms that ease their
implementation.

REFERENCES

[1] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.
Nguyen,N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammar-
Iund, R. Singhal, and P. Dubey, “Debunking the 100X GPU vs.
CPU myth: an evaluation of throughput computing on CPU and
GPU,” in Proc. ISCA, 2010.

[2] C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and
Color Images”, Proceedings of the 1998 IEEE International
Conference on Computer Vision, Bombay, India.

[3] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan
primitives for GPU computing,” in Proc. ACM Symp. GH, 2007.

[4] N. Govindaraju and D. Manocha, “Cache-efficient Numerical
Algorithms using Graphics Hardware,” Parallel Computing, vol.
33, no. 10-11, pp. 663684, 2007.

[5] R. Cole and U. Vishkin, “Faster Optimal Parallel Prefix Sums
and List Ranking,” Info. and Comput., vol. 81, no. 3, pp. 334352,
1989.

[6] S. Tomov, J. Dongarra, and M. Baboulin, "Towards Dense Liner
Algebrafor Hybrid GPU accelerated manycore systems,” Parallel
Computing, vol. 12, pp. 1016, Dec. 2009.

[7]1 E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief,
S. Thibault, and S. Tomov, "QR Factorization on a Multicore
Node Enhanced with Multiple GPU Accelerators,” University of
Tennessee, Tech. Rep.Computer Science Technical Report, ICL-
UT-10-04, 2010.

[8] H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra, ”A Scalable
High Performant Cholesky Factorization for Multicore with GPU
Accelerators,” in Proc. of VECPARI0, 2010.

[9] Dip Sankar Banerjee and Kishore Kothapalli, "Hybrid Algo-
rithms for List Ranking and Graph Connected Components,” in
Proc. of HiPC, 2011

[10] Yuko Roodt, Willem Visser and Willem A. Clarke, “Image
Processing on the GPU: Implementing the Canny Edge Detection
Algorithm,” in Proc. of PRASA, 2007.

[11] FIALKA O, Cadk M, "FFT and Convolution Performance in
Image Filtering on GPU,” in Proceedings of the conference on
Information Visualization, IEEE Computer Society, Washington,
DC, USA, 2006, pp. 609-614.

[12] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
Parallel Programming with CUDA,” ACM Queue, vol. 6, no. 2,
pp. 4053, 2008.

[13] Nvidia Corporation, "CUDA: Compute Unified Device Archi-
tecture programming guide,” Technical report, Nvidia, Tech.
Rep., 2007.

