

Objective

Organize a large egocentric video collection (of real-world data from a single individual) into a richly annotated database that facilitates rapid analysis and enables exploration of new visual data understanding applications.

Dataset

m T	
Walking in urban/campus/	Tim
residential areas, waiting at intersections and for bus	Dur
	Tota
Shopping, eating	Dev
Evening and night recording	
Activities in parks, at events	Data
Seasonal change	Gvr
Socializing with friends	GPS

Virtual Webcams

Webcams Capturing Long-term Scene Changes

- is not stationary, long-term scene over time.
- Each row in figure captures of bicycle stand, parked cars, season and lighting

Trajectory Estimation

- Motion trajectory is estimated by accelerometer and orientation sensor in the smart phone.
- Trajectory represents motion in next 7 seconds.
- Yellow color indicates motion, red means stop.
- GPS was not accurate for short term trajectories.

KrishnaCam: Using a Longitudinal, Single-Person, **Egocentric Dataset for Scene Understanding Tasks** Krishna Kumar Singh, Kayvon Fatahalian, Alexei Efros

e-span: 9 months

ation: 70 hours

l clips: 460

vice: Google Glass

a: 720 p, 30 fps elerometer, oscope, Orientation,

• Although the egocentric camera recording captures changes in a

(from top to bottom) changes in companion (person), movement

Motion Class Prediction

Trajectory Prediction

Trajectory is predicted by averaging trajectory of top 10 nearest neighbors in deep feature space (Pool-5 MIT Places Hybrid-CNN).

Predict straight at novel place

Predict Turn

Predict stop while eating

Predict Stop at intersection

Predict turn

Predict stop at novel bus stop

Value of Extended Recording

Novel Data Growth

- Quantify amount of novel visual data observed by the camera each day.
- Quantify amount of novel visual data electrony.
 Novel visual frames and semantic classes decreases with time. First Instance of Category

Popular Places

 Longer recording is needed to adequately sample rare events:

- 10 days for common turn.
- 30 days for less common turn.
- 50 days for rare eating event.

• Not until four months of recording had occurred did snowing days begin to appear in the dataset making prediction robust to seasonal change.

• Using only 50% and 25% of the training data, decreases motion class prediction accuracy relatively by 29% and 51% respectively.

• 17% of the dataset contains at least one human.

• Popular places are found correlating pedestrian detections with GPS measurements.

 Red regions indicate locations where (on average) more than four people are present in images.