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Figure 2. Recording was conducted throughout the city. Locations
visited rarely are shown in light blue. Red regions are the most fre-
quently visited, and correspond to areas surrounding the student’s
home and university.

1. An Outdoor Egocentric Video Dataset

In total, the dataset contains 70.2 hours of 720p, 30 fps
video (7.6 million total frames) making it significantly
larger than prior single-individual egocentric datasets re-
cently studied in computer vision[l, 3]. As shown in
Figure 1-A, data was collected regularly over the span of
nine months (164 of the 250 days in this span), with the
largest amount of recording on a single day being 149 min-
utes. Most recording took place between the hours of 11am
and 9pm (Figure 1-B), and thus the dataset contains video
recorded at dusk and at night. The most active day for
recording was Sunday (Figure 1-C) since the student had
more time to be outdoors collecting video.
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Figure 2 plots the location and density of recordings in
the student’s home city, where most recording took place
(92% of dataset). While recording has occurred in neigh-
borhoods throughout the city (the displayed map spans
about 30 square kilometers), as expected most recording
took place near the student’s home and university (the red
color indicates a larger number of distinct recordings at a lo-
cation). The most common sequence in the dataset is walk-
ing from the student’s home to his local bus stop, which
occurs 95 times.

1.1. First Occurrence of Common Scenes

It is interesting to consider when common scenes are ob-
served for the first time in the data, since the distribution
of these first encounters provides intuition about the long-
tail of life situations. We identify these situations by find-
ing frames whose similarity to the top-5 neighbors drawn
from prior recordings is low (no scene like it has been seen
before), but whose similarly to the top-5 neighbors drawn
from the entire dataset is high (the image is common in
the context of all recording). Figure 3 shows a selection of
frames that meet this criteria for various time ranges during
recording. (For these frames, the average cosine distance to
the five most similar frames in the entire dataset is greater
than that to the five most similar prior frames by at least
0.2.) The first five hours of recording contain the first in-
stances of many common scenes such as walking around
campus and to and from work. The next 15 hours capture
the first instances of waiting at a bus stop, eating outdoors,
and less traveled paths. Although the locations in the bot-
tom row of Figure 3 were often visited during early record-
ings, they are observed with snow for the first time after 20
hours of recording.

1.2. Distribution of People

Using Dollar’s pedestrian detector [4, 2], we determined
that 17% of frames in the dataset contain at least one person
(all bars, Figure 4-left). Thus it is interesting to consider
when the student sees them. The fraction of frames con-
taining at least one person is highest around noon (when the
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Figure 1. Breakdown of the duration of recording by day, by time of day, and day of week.

Scenes First Observed in 1 - 5 Hours

Figure 3. First occurrences of commonly observed scenes.

student is walking to lunch, Figure 4-center), and in gen-
eral higher on weekdays than weekends (campus and the
surrounding eateries are more lively, Figure 4-right).

2. Comparison with GPS

While it may seem reasonable to use GPS position for
motion prediction, measurements from present consumer
GPS technology are too spatially and temporally coarse
to make high-quality fine-scale, short-time horizon mo-
tion predictions. Figure 5-top shows an example trajectory
recorded using GPS. Even though the student moved along
the sidewalk in this situation, the GPS trajectory indicates
incorrect motion which deviates from the actual movement.
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Figure 5. Even though the student was walking continuously on the
sidewalk, GPS measurements were too spatially (top) and tempo-
rally coarse (bottom) to be useful for motion prediction.

Further, GPS coordinates updated only eight times in the
span of 60 seconds (Figure 5-top) in this example. We
find that even when the camera had previously visited at the
same location as the test frame, when compared to predic-
tions using visual similarly provided by MIT Places-Hybrid
network, GPS-position-based similarity yielded trajectory
prediction error 26.3% greater (on average for the 20,000
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Figure 6. Similar trajectory prediction error is obtained from
neighbors computed using MIT Places-Hybrid layer-5 descriptors
and layer-5 descriptors from our network finetuned for motion
class prediction.

visited location frames randomly chosen between 38 and 52
hours of the dataset and error is distance in meters between
predicted and ground-truth position seven seconds into the
future). Although it is likely possible to interpolate and fil-
ter the GPS signal to get better results, techniques based on
geographic position will not generalize to new locations and
will never be able to predict camera movement that is based
on transient properties of a scene. For example, GPS based
predictions fail in situations like stopping to talk to friends
or to avoid a moving car (visual-similarity can successfully
makes such predictions).
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Figure 4. The fraction of frames containing people, by number of people (left), time of day (center), and day of week (right).

3. Comparison with Fine-tuning

Using layer-5 response for the MIT Places-Hybrid net-
work and our fine-tuned network, we evaluate the quality
of predictions for 40,000 frames: 20,000 unvisited location
frames and 20,000 visited location frames randomly chosen
between 38 and 52 hours of the dataset. We assess predic-
tion quality by evaluating the distance (in meters) between
the predicted position and the measured 7; seven seconds
into the future.

Figure 6 plots prediction error for both similarity met-
rics. (For clarity we report overall error for the test set, and
also categorize results by the motion classes.) Overall, we
fail to observe notable benefit from class-based fine-tuning.
Closer inspection reveals that that fine-tuning improves pre-
diction accuracy in stationary situations, at the cost of de-
creasing performance slightly for the other motion classes.

Inspection of the nearest neighbor results generated by
the MIT Places-Hybrid network and the fine tuned network
does reveal significant qualitative differences in the charac-
ter of the resulting neighbors. As shown in Figure 7-(A-B),
the fine tuned network emphasizes objects in the foreground
in its definition of similarity. (These visual elements, such
as hands, people, and food are indicative of a need to stop.)
We also find the fine-tuned features also emphasize general
features of sidewalks and roads (C,D,F).

Figure 7 also provides evidence of why, even though fine
tuning yields compelling visual neighbors, those neighbors
don’t translate into quantitatively better predictions. For ex-
ample in (E) while all neighbors provided by the fine-tuned
network contain images of stairs to the left, these neighbors
are images of different stairwells, and the student’s motion
behavior differs in these locations (the place network pro-
duces exact matches in this scenario, and the student’s mo-
tion is consistent in this location). In case (F), while the
fine-tuned network produces arguably better visual matches
capturing the shape of the sidewalk ahead, the student de-
parted from sidewalk.
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Figure 7. (A) Fine-tuned nearest neighbors matching people. (B) Fine-tuned nearest neighbors matching eating scenarios with hand in
focus (original MIT Places-Hybrid network prioritizes elements from the road) (C) Fine-tuned nearest neighbors picks up horizontal road
strips which indicates observer is waiting. (D) Fine-tuned neighbors capture left turn of the query frame. (E) Top 10 neighbors generated
by the placed network are exact match with query image (same location), fine-tuned neighbors matches different staircases (F) Fine-tuned
neighbors capture the right turn pattern of the query image, much the student does not follow the sidewalk.
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