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Abstract

We record, and analyze, and present to the community,
KrishnaCam, a large (7.6 million frames, 70 hours) egocen-
tric video stream along with GPS position, acceleration and
body orientation data spanning nine months of the life of a
computer vision graduate student. We explore and exploit
the inherent redundancies in this rich visual data stream to
answer simple scene understanding questions such as: How
much novel visual information does the student see each
day? Given a single egocentric photograph of a scene, can
we predict where the student might walk next? We find that
given our large video database, simple, nearest-neighbor
methods are surprisingly adept baselines for these tasks,
even in scenes and scenarios where the camera wearer has
never been before. For example, we demonstrate the ability
to predict the near-future trajectory of the student in broad
set of outdoor situations that includes following sidewalks,
stopping to wait for a bus, taking a daily path to work, and
the lack of movement while eating food.

1. Introduction

“A baby has brains, but it doesn’t know much. Experi-
ence is the only thing that brings knowledge, and the longer
you are on earth the more experience you are sure to get.”

—L. Frank Baum, The Wonderful Wizard of Oz

With video cameras rapidly becoming tinier, cheaper,
and more power efficient, computers will soon have the
ability to observe an increasingly large fraction of life’s
events. Whether it be life-logging videos, household web-
cams, dashboard cams, security cams, or even daytime TV,
these emerging (always-on) data streams provide an endless
collection of examples that document how people and ob-
jects function in the world. Of course, this data presents the
challenge of finding new ways to extract value from these
visual data sources.

In this paper we make two contributions. First, we have
created our own streaming data source—we have recorded a
large egocentric video stream (KrishnaCam) that spans nine

months of the life of a computer vision graduate student.
Today, the dataset consists of 7.6 million frames, but the
camera will continue to be on and this dataset will grow ev-
ery day (at least until the students says “I’ve had enough”).
Second, we explore and exploit the inherent redundancies
in this unique visual data stream to provide answers to sim-
ple scene understanding questions such as: given a single
egocentric photograph of a scene, can we predict where the
student might walk next in the scene? How much novel vi-
sual information does the student see each day? Can we
mine the dataset to establish scene changes over time, or
yield unique insights into the student’s environment?

Our decision to analyze an egocentric video stream
presents the challenge of interpreting data from a moving
camera and from a diverse set of everyday situations (as
opposed to a stationary camera in a room). However, by
constraining collection to a single individual, as opposed
to recording a shorter span from many individuals (or us-
ing unstructured image or video collections from the inter-
net), we limit the events we observe to not be too diverse—a
single individual’s daily life experiences are only so broad.
From these redundancies across a large database of observa-
tions, valuable patterns begin to emerge. For example, us-
ing simple, nearest neighbor methods we observe (and can
predict), that like most humans, the student generally stops
at intersections and walks straight in sidewalks, but we can
be surprised by a harmless jaywalk. While we record many
predictable mornings of taking the same walk to campus,
we also record trips to parks and lunches with friends. As
more data continues to be collected, we expect our ability
to predict to continue to improve.

With new data, perhaps involving new life situations, ar-
riving daily from our continuous video stream, we are con-
fronted with the challenge that it is simply intractable to
involve humans in the labeling of data. Thus our analyses
focus on tasks that are well-suited for always-on streams.
For example, properties such as visual uniqueness can be
explored directly from the data itself. Also, camera motion
can be reliably estimated from auxiliary sensors, affording
the ability to use a large corpus of examples to make (and
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Figure 1. Over nine months we acquired a 70 hour (7.6 million frame) egocentric video dataset capturing daily outdoor activities of a
computer vision graduate student. The dataset spans a wide variety of environments and life experiences.

then automatically validate) new motion predictions.

2. Prior Work

Although early explorations of egocentric image capture
such as the MyLifeBits [8] system from Microsoft Research
and the U.K.’s “Memories for Life” grand challenge initia-
tive [1] were longitudinal studies of data from a single in-
dividual, nearly all recent egocentric datasets [20, 16] have
been collected by multiple individuals for very short dura-
tions and span. Aghazadeh et al. [2] collected data from
a single individual for an entire month, but recorded for a
only few minutes daily and along the same walking route
each day. Perhaps the closest dataset to our recordings is
the 6-month egocentric dataset recently produced by Cas-
tro et al. [3] (and used to learn a model to predict everyday
activities). However, this dataset consists of images, not
video, taken at a fixed interval (from once a minute to once
per 5 minutes). Our dataset consists of video collected for
several months and in a diverse set of environments.

As it has become easier to acquire egocentric video en
masse, the uniqueness of egocentric content, and the dif-
ficulty of its analysis, has made it an increasingly popular
target of recent study. Researchers have explored activity
recognition [5, 6, 12, 20], object recognition [21, 7], sum-
marization [16, 18, 10], and pose estimation [22] on ego-
centric videos. Aghazadeh et al. [2] leverage redundancy in
videos to identify novel events. Lee et al. [16] attempted
to remove the “boring” parts of egocentric videos by pre-
dicting important objects and events. Given that egocentric
video cameras are fundamentally mobile devices, we view

camera movement prediction as a challenging new task for
researchers in the area to consider.

Our work in Section 5 takes a purely data-driven ap-
proach to the task of temporal prediction. Similar to prior
methods [17, 27] we make no assumptions about the vi-
sual environment, require no semantic labeling of the scene,
and leverage simple nearest-neighbor search of large visual
databases to find examples that are likely to predict future
behavior. While [17, 27] also sought to transfer object mo-
tion across different scenes in unstructured video collec-
tions, we benefit from a database that is substantially larger
and also heavily biased toward the experiences of a single
individual. Kaneva et al. [11] also adopt a data-driven ap-
proach to prediction using a Street View image dataset that
has similar characteristics to our outdoor egocentric videos,
but their work aimed to predict what might be observed if
the camera undertook a specified motion, not make predic-
tions about the camera motion itself.

Modeling and predicting the motion of agents in a scene
is a primary focus of the field of trajectory-based activity
analysis [19, 13, 14]. Much of this work, as well as re-
cent work on unsupervised visual prediction [24], assumes a
fixed camera viewpoint (e.g. a security camera or webcam
recording a single scene), not a mobile egocentric camera
that encounters a diverse array of environments and life sit-
uations. Further, most prior trajectory analysis efforts seek
to predict the behavior of agents in the scene, whereas in
our case, the agent is the videographer himself.



3. The KrishnaCam Dataset

Over a period of nine months (September 2014 to May
2015) we collected egocentric video of the daily outdoor
activities of a single graduate student. Whenever possi-
ble, the student attempted to continuously record video out-
doors (technical, legal, and social constraints limited the
scope recording that could be performed). The dataset, ac-
quired using Google Glass, consists of 460 unique video
recordings, each ranging in length from a few minutes to
about a half hour of video. Recording took place over a
wide geographic area (including many different neighbor-
hoods of the student’s home city and trips out of the city),
contains visual diversity due to seasonal change (snow in
winter months), and day-and-night recording. The videos
capture the student’s movement and interactions with oth-
ers in a diverse set of residential, campus, and urban areas,
as well as in multiple city parks. The dataset captures many
repetitive daily activities as walking from the student’s res-
idence to and from campus, walking with colleagues to lo-
cal restaurants, and waiting in line for and eating meals at
outdoor fast-food stands with friends. (The most common
sequence in the dataset is walking from the student’s home
to his local bus stop, which occurs 95 times.) However,
due to the extended nature of the recording we also have
captured a number of rare events, such as a trip an amuse-
ment park and sledding on a snow day. The student’s GPS
position, acceleration, and orientation was also captured us-
ing a smart phone in the student’s pocket, and subsequently
synced with the video data. Given this collection method-
ology, the dataset’s non-visual sensor readings describe the
configuration of the student’s body, not the orientation or
acceleration of the head-mounted camera.

In total, the dataset contains 70.2 hours of 720p, 30 fps
video (7.6 million total frames) making it larger than prior
single-individual egocentric datasets recently studied in
computer vision [2, 16]. Due to its large size, our experi-
ments operate on a 5 fps sampling of the source videos.

4. Novel Visual Data Growth

Hypothesizing that the life of a computer vision grad-
uate student is highly redundant, we attempted to quan-
tify the amount of novel visual data observed by the cam-
era each day. Specifically, for each frame, we identify its
top-5 nearest neighbor frames from prior recordings. We
use cosine similarity between layer-5 outputs (after pool-
ing) of the MIT Places-Hybrid network [28] as a distance
metric for nearest neighbor computations since this network
was trained on scene categories that bare similarity to many
scenes present in our dataset. (The MIT Places-Hybrid net-
work is the Krizkevsky et al. network topology [15] trained
on 1183 categories: 205 scene categories from the MIT
Places database [28] and 978 object categories from Ima-
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Figure 2. Due to the redundency in daily life, the rate novel frames
are observed decreases with time. Days recording in new locations
are easily identified as spikes in the graph near 26 and 40 hours
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Figure 3. First occurrences of semantic classes in the dataset (as
evaluated by the MIT Places-Hybrid CNN).

genet [23].) We also experimented with similarity based on
layer-7 outputs, but found the layer-5 results to yield more
intuitive neighbors. To ensure diversity in the resulting
neighbor list, all nearest neighbor frames are constrained
to be separated by at least 10 minutes.

We label a frame as novel if the average similarity of
its top-5 nearest neighbors is below a threshold, or if five
valid neighbors do not exist given the selection constraints.
(We empirically determined 0.55 to be a reasonable thresh-
old for novelty in our data). Given this definition, Figure 2
plots the fraction of novel frames observed in each hour of
the first 60 hours of recording. As to be expected, at the
start of recording a large fraction of frames are novel, but
this fraction drops as more data is recorded. For example,
after only a few days of recording, many frames observed
on the commonly traveled path between the student’s home
and campus are no longer novel. The two peaks of the graph
(steep rises in the amount of novel visual information) cor-
respond to days the student spent outside his home city.

In addition to identifying visually redundant frames we
also identified the first occurrences of MIT Places-Hybrid
CNN classes in the dataset (Figure 3). (To make the figure
we chronologically sorted top classifications and manually
removed false positives.) Notice that significant amounts of
recording are necessary before the first instances of classes



Figure 4. Example motion trajectories obtained from accelerom-
eter and orientation sensor readings. Red dots indicate moments
when the camera wearer is stationary.

like “snow field” (due to the arrival of winter), “fountain”
and “skyscraper” (the first walk downtown), and “coast”
(due to travel).

5. Student Motion Prediction

We attempted to use the motion-annotated video dataset
(KrishnaCam) to address the simple scene-understanding
question: given a single image, can we predict where the
student would walk next in the scene. We chose to focus
on the task of predicting future camera motion from a sin-
gle image (rather than attempt predictions based on recent
video history or motion clues), because single-view scene
understanding is a task that is performed by humans quite
well, but remains very difficult for computers. The task
is well-established in the literature (e.g. [11, 17, 27]) and
is an important to address because it forces a higher-level
of semantic understanding than temporal-based methods.
For example, MPEG-style low-level processing can per-
form short-term prediction quite well without understand-
ing anything about the scene—we wish to avoid this bias by
providing only a single image at test time.

5.1. Estimating Motion Trajectories

We found GPS position measurements by commercial
smart phones to be too spatially and temporally coarse to
be viable motion measurements for short time scales. In
urban environments, consecutive consumer GPS position
readings can differ by tens of meters (significant noise com-
pared to pedestrian velocities) yielding poor motion predic-
tions. (See supplementary material for a quantitative com-
parison with the results in Section 5.3.) Instead, we estimate
the student’s motion from accelerometer and orientation
sensor readings taken from a smart phone in the student’s
pocket. We trained a multi-class-SVM classifier on two-
second windows of accelerometer readings to classify the
student’s velocity vi at frame fi as stationary (0 m/s), slow
(0.375 m/s), regular (1.0 m/s), or fast (1.375 m/s). Given
this velocity estimate and measured changes in body orien-
tation between frames, we annotate each fi with a 2D tra-
jectory Ti = [x0, y0, x1, y1 . . . xN�1, yN�1] of the student

1 2 3
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7 8 9 C(fi)=9
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Figure 5. We classify motion by the grid cell the camera wearer
ends up in after seven seconds. Real-life motion is highly biased
towards walking straight (turns are rare.)

Motion Class Prediction Accuracy (Unweighted)
Unvisited (%) Visited (%) Overall (%)

Fine Tuned 58.4 81.2 73.4
NN 54.9 81.4 72.2
Chance 43.2 51.3 48.5

Table 1. Motion class prediction accuracy from the fine-tuned
MIT Places-Hybrid network is better than the chance and nearest-
neighbor baselines. Accuracy for test images taken at never-before
visited and previously visited locations is reported separately.

for the next M seconds. Trajectories are sampled at 5 fps,
so |Ti| = 10M . The motion trajectories encode position
relative to the student’s position and measured orientation
✓i at fi. Therefore, for each Ti, the coordinate of the j

th

point in the trajectory is:

x0 = 0

y0 = 0

xj = xj�1 + vi+j ⇥ cos(✓i+j � ✓i)

yj = yj�1 + vi+j ⇥ sin(✓i+j � ✓i)

We find this simple approach is sufficient to automatically
generate “ground truth” trajectory information for the entire
video dataset (no human labeling). Figure 4 shows several
examples of these 7-second trajectories, rendered with per-
spective from the point-of-view of the egocentric camera.
(Stationary moments of the trajectory are red.) For exam-
ple, the bottom-left image depicts a future where the student
stands still for 7-seconds on the street corner. In the bottom-
right image the student briefly continues forward and then
stops at the door.

5.2. Predicting Motion Classes

As an initial prediction experiment, we sought to predict
simple, discrete descriptions of student movement. As vi-
sualized in Figure 5-left, we form discrete motion classes
by partitioning the ground plane in front of the student into
a 3⇥3 grid, and label each frame fi with C(fi), the grid
cell containing the last point in Ti (i.e., where the student
will be in seven seconds). The grid is scaled to encom-
pass the maximum 7-second displacement of the camera-
wearer in the dataset. (We clamp backward vertical motion
to zero.) To learn a motion predictor C(fi), we modify the



Class Unvisited (%) Visited (%) Overall (%)
1 (Hard-Left) 1.2 11.2 7.9
2 (Stop) 26.2 56.2 41.8
3 (Hard-Right) 4.8 29.3 22.9
4 (Med-Left) 9.6 27.7 23.6
5 (Med-Straight) 25.6 27.3 26.6
6 (Med-Right) 7.1 22.6 18.9
7 (Soft-Left) 20.4 48.4 40.3
8 (Straight) 35.4 57.4 51.3
9 (Soft-Right) 16.8 38.9 31.6
Overall 16.4 35.4 29.4

Table 2. Per-class motion prediction accuracy resulting from
weighted network training.

final softmax layer of the MIT Places-Hybrid Network [28]
to predict nine motion classes rather than the original 1183
classes and then fine-tune the network (using Caffe [9]) on
a training set of motion class labels from the first 38 hours
(681,565 frames, September 18 to March 2) of the dataset.

When evaluated on a test set of 252,209 frames (col-
lected between 38 and 52 hours of the dataset, March 5 to
April 11), the classifier achieves 73% prediction accuracy.
Its performance exceeds chance (guessing a motion cate-
gory based on the distribution of training class labels yields
48.5% accuracy) as well as that of a nearest-neighbor base-
line that uses layer-5 responses of the MIT Places-Hybrid
network to compute neighbors of frame fi, then computes
C(fi) as the grid cell most often traveled to after these
neighbors. The test set contains recordings in locations that
the student has previously visited often (e.g., his walk to
work), as well as images of never-before-visited locations
(approximately 34% of the test set is recorded in completely
novel locations). Table 1 reports classification accuracy
separately for both types of testing frames.

Reflecting the real-life behavior of the student, the
dataset is heavily towards instances of walking straight.
(Figure 5-right shows that 68% of training frames involve
a walking straight scenario: C(fi) = 8, and less than 1%
involve hard left or right turns.) The classifier described
above reflects this skew, rarely predicting less common mo-
tion events. To improve prediction of infrequent (and ar-
guably more interesting) motions, we also trained a clas-
sifier to maximize performance on a single-frame classifi-
cation task (i.e., to predict motion category from a single
frame, when all motion categories are equally likely).

Rather than supply equal numbers of training examples
for each motion class (which would dictate using only a
small fraction of the training data), we use all training
frames, but for each training frame, scale the gradient used
for back-propagation by the size of the frame’s motion cate-
gory. This modification reweights loss so all categories may
influence training equally despite having unequal numbers
of exemplars. Per-class prediction accuracy is given in Ta-
ble 2 (chance is now 11.1%). The classifier’s full confusion
matrix is provided in the supplementary material.
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Figure 6. Most confident predictions for selected motion classes
reveal visual clues that suggest upcoming motion. Red boxes in-
dicate images from locations not visited in the training data.

As shown from the examples of top predictions in Fig-
ure 6, we observe the classifier is often able to predict fu-
ture motions, even if images are from locations the student
had never visited before (red squares). Visual characteris-
tics such as roads or sidewalks suggest forward movement
(Class 8), intersections indicate the possibility of stopping
(Class 5), and food and people in the foreground are usually
observed when stationary (Class 2).

5.3. Predicting Trajectories

Class-based prediction provides only a coarse descrip-
tion of future motion. We are also interested to predict
richer movements, such as a gradual turn to the right, or
a swerving path around an upcoming obstacle. Specifically,
we seek to predict the immediate future trajectory Ti of the
camera wearer in a scene depicted in a single input image.

We lean on the rich visual history contained in our
database and pursue a nearest-neighbor-based approach to
trajectory prediction. Given each new frame, we estimate
the camera wearer’s future trajectory as the average of
the trajectories of its top-10 nearest neighbors. As with
the prior class prediction experiments, we search the first
38 hours of recording (681,565 frames after temporal sub-
sampling) during nearest neighbor search. Since our image
database consists of frames from long video recordings (not
unstructured image collections), to ensure neighbors come
from a diverse set of prior experiences, we require that all
returned nearest neighbor frames are separated by at least
ten minutes in time. Without this condition, top nearest
neighbors are often consecutive frames from a single video
in the database. As described in Section 4 we use cosine
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Figure 9. Motion trajectory predictions for SUN database images.

similarity of MIT Places-Hybrid layer-5 outputs [28] as a
metric for nearest neighbor computations. We also experi-
mented with similarity based on layer-7 outputs, but found
the layer-5 results to yield more intuitive neighbors.

5.3.1 Quantitative Evaluation

We evaluate the quality of trajectory predictions for
40,000 frames (20,000 unvisited location frames, 20,000
previously-visited location frames) randomly chosen be-
tween 38 and 52 hours of the dataset. We assess prediction
error as the distance (in meters) between the predicted po-
sition and the measured position seven seconds into the fu-
ture. Figure 7 plots the error in these predictions for images.
(To examine prediction error in different contexts, we sepa-
rate results into previously visited and unvisited test frame
groups and by the motion classes used in Section 5.2). Pre-
diction error is greater for test images of previously unvis-
ited places. It is also higher in the presence of turns.

5.3.2 Qualitative Evaluation

Figure 8 shows that nearest neighbor-based prediction ap-
proach yields surprisingly accurate predictions across a va-
riety of scenes. In (A-B) the system is able to predict
common navigation behaviors such as the camera wearer
following the path and sidewalk, (C) remaining stationary
when eating, (D) stopping at an intersection, and not walk-

Query: with
measured traj 10 days 30 days 50 days

Trajectory Prediction

Query: with
measured traj Prediction Top-10 Neighbors

60 days

120 days

Figure 10. Top: Longer recording is needed to adequately sam-
ple rare events. Bottom: Not until four months of recording had
occurred did snowing days begin to appear in the dataset, making
prediction robust to seasonal change.

ing into the middle of traffic (E). In rows B-E, G of Figure 8,
a large fraction of the nearest neighbor set comes from lo-
cations different from the query, resulting in the successful
transfer of motion information to new situations and envi-
ronments. (This transfer would not be possible using GPS!)

In addition, our dataset is sufficiently large to capture
common patterns and redundancies in the student’s daily
life (he is a grad student, after all!), resulting in accu-
rate predictions that are highly specific to the individual.
For example, even though intersections offer the possibility
for travel in several directions, the student almost always
moves in the same direction at many commonly visited lo-
cations (F). Finally, some of the system’s correct predictions
were quite unexpected. For example, in (G) the system cor-
rectly predicts a future of standing still at a bus stop. Inter-
estingly, the nearest neighbors that produced this prediction
come from a similar views of the road at bus stops in a dif-
ferent part of town. Both situations feature a similarly an-
gled view of the road from the sidewalk (likely the student
looking back for a bus).

Figure 9 emphasizes the single-image prediction aspect
of our chosen task by illustrating camera wearer motion pre-
dictions for images from the SUN dataset. [26]. As before,
for each query image, we find its top-10 nearest neighbors
in our training data and predict motion by averaging the tra-
jectories of these neighbors. While ground truth motion is
not available to validate predictions (the camera wearer was
never present in these scenes), the predicted trajectories de-
pict plausible motions.
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Prediction of general behaviors that hold across different events and/or locations: (A-B) following a sidewalk
(in both frequently visited and novel locations) (C) remaining stationary while eating food, (D-E) stopping at new
intersections or when there is traffic. 

Unexpected prediction: (G) staring at road at angle is indicative of waiting at bus stop. (Note: nearest neighbors
are from bus stops in a different part of town.)

Prediction of frequent individual behaviors: (F) turning right at a particular intersection
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Figure 8. Examples of successful trajectory predictions.

5.3.3 Value of Extended Recording

To gain a better understanding of the relationship between
dataset size and prediction accuracy, (i.e., “how much data
is actually necessary?”), we repeated the reweighted mo-
tion class training from Section 5.2 with smaller training
sets containing only 25% (first 10 hours) with 50% (first 19

hours) of data. The prediction accuracy of the resulting clas-
sifiers fell from 29.4% to 14.5% and 20.8%, respectively.

Figure 10 illustrates the value of extended video record-
ing. While only a 10-day span of recording is sufficient to
confidently predict the right turn taken every day outside
the student’s home (top row), longer amounts of record-



Figure 11. Although the egocentric camera is not stationary, long-
term recording captures changes in a scene over time. From top
to bottom: changes in companion, movement of a bicycle stand,
changes in parked cars, season, and lighting.

ing are needed to predict a left turn at frequently traveled
intersection (30 day span), or sitting while eating (50 day
span). Figure 10-bottom shows that four months of record-
ing were necessary for the same right turn outside the stu-
dent’s home to be accurately predicted on snowy days. (Pre-
diction becomes robust to seasonal changes only after a suf-
ficient number of snowy days exist in the training set.)

6. Virtual Webcams

Even though the egocentric camera is not stationary,
many scenes appear frequently over the nine months of
recording. We visualize this repetition by constructing “vir-
tual webcams” that reveal interesting aspects of the time
evolution of these scenes. Webcams are constructed by
finding nearest neighbors for dataset frames using the same
method as discussed in Section 4, and then manually se-
lecting a subset of top neighbors that are well distributed in
time. Each row of Figure 11 shows a selection of frames
from one such webcam. The webcams reveal the collection
of friends the student walks to lunch with (row 1: different
people at the same intersection), change in physical struc-
tures like the movement of a bike rack due to on-campus
construction (row 2), or cars parked on the same block on
different days (row 3). These webcams also depict sea-
sonal change (row 4) and the diversity of lighting conditions
throughout the day (row 5).

7. Detecting Popular Places

Our egocentric video stream also faciliates analyzes that
shed light on aspects of the student’s environment. For ex-
ample, what are the most popular locations that the student
visits? Using Dollar’s pedestrian detector [25, 4], we deter-
mined that 17% of frames in the dataset contain at least one

Crowded intersection

Play & activity area

Entrance to university’s
student center

Crowded
downtown
intersection

Outside movie
theater

Restaurants
near
university

Figure 12. Red regions indicate locations where (on average) more
than four people are present in images. These locations are uni-
versity hangouts areas, blocks with popular restaurants and movie
theaters, and busy intersections.

person. By correlating these pedestrian detections with GPS
measurements, it is possible to use the dataset to identify
popular locations. For example, the heatmaps in Figure 12
plot geographic locations where more than four persons are
observed on average for all images captured near that loca-
tion. The figure identifies locations on campus where stu-
dents often congregate (e.g., outside the student center, at
an intersection between campus and the university’s largest
dormitory) as well as local establishments (e.g., movie the-
ater and popular restaurants) where lines often build up.

8. Discussion

In this work we collected a large-scale, motion anno-
tated, egocentric video stream documenting the daily life
of a single graduate student. We demonstrate that the
unique size and longitudinal characteristics of the Krish-
naCam dataset enable new opportunities to explore novel
scene understanding tasks, such as egocentric camera mo-
tion prediction, and that the dataset enables new analyses
that shed light on the nature of an individual’s daily visual
environment (novel data estimation, virtual webcams, pop-
ular place detection).

We observe that given enough data, nearest neighbor
methods employing deep feature similarity metrics can be
surprisingly effective at these tasks. We hope the dataset
and these baseline results inspire future work improving
upon these techniques and trying new tasks such as motion
prediction based on recent video history, not only a single
image (using the temporal aspect of video). We plan to con-
tinue our recording effort each day, making the data avail-
able to the community. As more data is collected, we antic-
ipate our ability to attempt more sophisticated analyses and
make more accurate predictions will continue to improve.
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